中国源学 第10 卷 第10 期

HoP₅O₁₄晶体的结构与光谱

王庆元 刘书珍 白云起 陈明玉 莆向明

(中国科学院长春应用化学研究所)

提要:研究了HoP5O14 晶体生长,测定了它的结构,分析了它的晶面与几何外 形。研究了吸收、激发、荧光及红外光谱。首次测出了 HoP5O14 晶体中 Ho3+的 5I7-⁵I8 跃迁在2.046 微米。

Spectra and structure of HoP₅O₁₄ crystals

Wang Qingyuan, Liu Shuzhen, Bai Yungi, Chen Mingyu, Dong Xiangming

(Changchun Institute of Applied Chemistry Acadimia Sinica)

Abstract: We have studied the growth and the structure of HoP_5O_{14} crystals. The crystal face and geometric forms have been analysed, the absorption, excitation fluorescence and infrared spectra have been investigated and the ${}^{5}I_{7} - {}^{5}I_{8}$ transition of Ho³⁺ in HoP₅O₁₄ at 2 046 μ m have been determined for the first time.

前 言

自 1972 年发现 NdP5O14 晶体是一种新 型高效激光材料印以来。这类晶体的生长、结 构与光谱特性已成为重要的研究课题。除大 量文章报导 NdP5O14 晶体的这些特性^[3~7]之 外, Pr³⁺、Sm³⁺、Eu³⁺、Tb³⁺、Dy³⁺、Yb³⁺等稀 土五磷酸盐晶体及其性能的研究工作也相继 发表[8~11]。1975年以来,我们对一系列稀土 五磷酸盐晶体进行了研究,并报导了 NdPs O14 [12] REx Nd1-xP5O14 [13] TbP5O14 [14, 15] EuP5O14^[16] 等晶体的生长、结构与光谱特性 的研究结果。

HoP5O14晶体 Ho3+ 在2.0 微米的发射. 是处于大气窗口波段。对这种晶体材料进行

研究具有实际意义。本文对 HoP5O14 晶体的 生长、结构、各项光谱进行了较详细的研究, 并在测定紫外可见区光谱的同时,建立了 HoP5O14 晶体中 Ho3+ 5I7-5I8 在 2.0 微米 区发射的荧光光谱探测技术。

实验与结果

1. 晶体生长

HoP5O14晶体采用籽晶成核法生长。将 H₃PO₄与Ho₂O₃按(25~30):1的重量比混 合,倾入黄金坩埚中。在250~300°C 脱水溶 解, 然后将尺寸约为2×2×4毫米³ (重量约 为0.1~0.2 克)的 HoP5O14 籽晶按(100) 或 (001)面置于坩埚底部中心。密封容器,在2

收稿日期: 1982年10月13日。

.730 .

小时内将温度升到 580~630°C, 恒温 15~20 天后, 自然冷却到 60°C 以下, 取出晶体洗净。 用此法生长, 可得到尺寸为 2.4×1.2×0.6 厘米³的 HoP₅O₁₄ 晶体。装置示于图 1。

2. X光衍射分析

Beucher^[17]曾指出 HoP₅O₁₄ 晶体具有两 类结构: 一类是正交晶系,空间群为 *Pnma*; 另一类是单斜晶系,空间群为 *C*₂/*C*。

用日本理学 2028 型衍射仪 Cu_{Ka} 辐射, Ni 滤波,2°/分扫描速度,对不同条件下生长 的单晶作了结构分析。实验结果表明,我们 生长的 HoP₅O₁₄ 晶体多属单斜晶系,也曾得 到正交晶系的晶体,但属于多晶不透明。用 *X* 光粉末图分析和计算 得到的 HoP₅O₁₄ 晶 体结晶学参数列于表1(本文中定义的 *c* 轴 和文献中定义的 *b* 轴等价)。

表1 HoP₅O₁₄ 晶体的结晶学参数

	正交			单		斜	
1	$a(\text{\AA})$	b(Å)	$c(\text{\AA})$	$a(\text{\AA})$	$b(\text{\AA})$	$c(\text{\AA})$	β(O)
本文	8.68	8.92	12.75	12.92	12.77	12.43	91.03°
*	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} 12.710 \\ \pm 6 \end{array}$	$8.926 \\ \pm 4$	12.881 (5)	12.771 (5)	12.424 (5)	91.34° (5)

* 正交文献[18],单斜文献[19]

从外貌看,单斜晶系的 HoP₅O₁₄ 单晶光 学质量较好,是具有一定几何形态的透明晶 体,,自发成核生长的晶体多为粒状,表现出三 个轴向生长速度相近的特性。但也有部分 呈 片状,表现出 $V_b > V_a > V_e$,一般呈六角形,见 图2。沿 b 轴和 c 轴延伸呈板状,见图 3-(2), 沿 c 轴生长呈柱状,见图 3-(3)。

图 3 HoP₅O₁₄ 晶体习见型示意图

用国产 Y-2 型衍射仪测定了各个晶面, 以板状晶体为例,确定各晶面如下:

在[001]晶带的晶面最多。常见(110), (110),(110),(110)和(100)、(100),而 (010)、(010)容易被淹没成晶棱。除(001) 锥顶外,常见(111)也有(112)和(113),见图 2。其他习见形见图 3。

观察晶体发现,一般沿 c 轴生长的柱状 晶体光亮透明,垂直于 c 轴解理完全,多数像 云母一样易脱落成片。

3. 光谱特性

① 红外光谱

将正交晶系与单斜晶系的 HoP_5O_{14} 粉末 与 KBr 混合压成片,在 Unican SP 1050 红 外光谱仪上扫描 600~4000 厘米⁻¹ 波段内的 红外光谱,见图 4 中 a, b。图 4 中 975~1365 厘米⁻¹之间 P-O 键特征振动频率^[133] 的差别 证实了我们生长的 HoP_5O_{14} 晶体 确 属 单 斜 与正交两种晶系。

② 吸收光谱

在日制 UV-360 型分光光度计上测得单 斜结构 HoP₅O₁₄ 单晶室温下的 吸 收 光 谱 示 于图 5。从图 5 看出 HoP₅O₁₄ 单晶的吸收谱 线很丰富,从紫外一直延续到近红外区。为

• 731 •

表2 HoP₅O₁₄ 晶体室温下的能级

(S'L')J'	波长 (Å)	波数(厘米-1)	(S'L')J'	波长(Å)	波数(厘米-1)
³ M ₈ (³ F, ⁵ D) ₃	2190 2330	45662 42918	${}^{5}F_{2}$ {	4730 4780	21142 20920
$({}^{3}F, {}^{5}D)_{4}$ ${}^{5}D_{3}$	2410 2500	41494 40000	⁵ F ₃ {	4840 4875	20661 20512
${}^{3I_{7}}_{(^{3}H, 5D, ^{1}G)_{4}}_{(^{5}G, 5D, ^{3}G)_{4}}$	2605 2780 2870	38388 35971 34843	⁵ S ₂ {	5370 542 5 5480	$ 18627 \\ 18433 \\ 18248 $
${}^{3M}_{10}({}^{3}L_{8})$ ${}^{3K_{6}}_{{}^{3}L_{9}}$	2930 3330 3450	34129 30030 28986	⁵ <i>F</i> ₅ {	6410 6520 6555	15600 15337 15256
³ H ₆ ³ K ₇	3610 3815	27700 26212	⁵ <i>I</i> ₅ {	8910 9100	11223 10989
${}^{5}G_{4}$ { (${}^{5}G, {}^{3}G)_{5}$ {	$3850 \\ 3890 \\ 4165$	25974 25707 24010	⁵ <i>I</i> ₆ {	11460 11520 11880	87260 86801 84175
⁵ G ₆ {	4475 4510 4565 4675	22346 22172 21905 21390	5 <i>I</i> 7 {	18920 19080 19480 20380	5285 5241 5133 4906

.732 .

图 6 HoP₅O₁₄ 晶体室温下的能级图 1- ${}^{3}M_{8}$; 2-(${}^{3}F, {}^{5}D$)₃; 3-(${}^{3}F, {}^{5}D$)₄; 4- ${}^{5}D_{3}$; 5- ${}^{3}I_{7}$; 6-(${}^{3}H, {}^{5}D, {}^{1}G$)₄; 7-(${}^{5}G, {}^{5}D, {}^{3}G$)₄; 8- ${}^{3}L_{8}({}^{3}M_{10})$; 9- ${}^{3}K_{6}$; 10- ${}^{3}L_{9}$; 11- ${}^{3}H_{6}$; 12- ${}^{3}K_{7}$; 13- ${}^{5}G_{4}$; 14-(${}^{5}G, {}^{3}G$)₅; 15- ${}^{5}G_{6}$; 16- ${}^{3}K_{8}$; 17- ${}^{5}F_{2}$; 18- ${}^{5}F_{3}$; 19- ${}^{5}S_{2}$; 20- ${}^{5}F_{5}$; 21- ${}^{5}I_{5}$; 22- ${}^{5}I_{6}$; 23- ${}^{5}I_{7}$; 24- ${}^{5}I_{8}$

Ho³⁺在2.0微米附近的激光发射提供了丰富泵浦区。

HoP₅O₁₄ 单晶的能级与能级图列于表 2 与图 6。

③ 激发光谱

HoP₅O₁₄ 晶体的激发光谱是在日制 MPF-4型荧光分光光度计上测得的。我们作 了荧光位置分别在400毫微米、460毫微米、 500毫微米、560毫微米的激发光谱,发现除 随荧光位置改变使激发峰的数目有所增减 外,激发光谱的形状完全一致,仅举其中之一 示于图7,并发现 HoP₅O₁₄ 晶体的激发光谱 与吸收光谱也有很好的相似性。

④ 荧光光谱

HoP₅O₁₄ 晶体中 Ho³⁺紫外、可见波段的 荧光光谱是在日制 MPF-4 型荧光分光光度 计上测得的,我们记录了一系列不同激发波 长激发的荧光光谱。也发现除随激发波长变 化使荧光数目相应增减外,光谱形状未见任

图 7 HoP₅O₁₄ 晶体室温下荧光位于 560 毫微米的激发光谱

山山山山山山山山山山山山山山山山山山山山 300 350 400 450 500 550 600 650 700 (毫微米) 图 8 HoP₅O₁₄ 室温下 266 毫微米 激发的荧光光谱

何变化,见图8。

采用长春光机所试制的 GDS 50-1 型数 字式 0.5 米光栅单色计代替旧分光光度计中 WPG-100 型1米光栅单色计,美制 5204 型锁 定放大器,冷却 PbS(77K)接收器,首次探测 出 HoP₅O₁₄ 中 Ho³⁺ 近红外区的 ${}^{5}I_{7} - {}^{5}I_{8}$ 跃 迁的荧光光谱,其发射峰值位置在 2.046 微 米。整个峰群从 1.88 微米延续至 2.10 微米, 见图 9。关于 HoP₅O₁₄ 晶体中 Ho^{3+ 5}I₇ - ${}^{5}I_{8}$ 跃迁在 2.046 微米的荧光发射,到目前为止, 国内外还未见报导。

吸收光谱系长春物理所于宝贵、关中素 同志提供的,在此表示谢意。

.733 .

图 9 室温下 HoP5O14 5I7-5I8 跃迁的荧光光谱

参考文献

- [1] H. G. Danielmeyer et al.; IEEF J. Quant. Electr., 1972, QE-8, No. 10, 805.
- ['2] M. Blatte et al.; Appl. Phys., 1973, 1, No. 5, 275.
- [3] G. Huber; IEEE J. Quant. Electr., 1974, QE-10, No.9, 766.

(上接第493页)

图 5 F18 玻璃中的一个激光微 破坏点及其附近夹杂物的位置 (箭头指向为激光入射方向) (SEM×1500)

点附近有固体夹杂物微粒子存在,裂纹方向 似乎也与夹杂物位置有关。偏光显微镜可以 确定在一些破坏微点处的夹杂物是小多晶粒 子。一束高功率激光通过样品时,玻璃夹杂

- [4] G. Huber et al.; J. Appl. Phys., 1975, 46, No. 8, 3580.
- [5] M. Marais et al.; J. Cryst. Growth, 1976, 35, No. 3, 329.
- [6] Т. В. Бабкина и др.; ЖПС, 1976, 14, №5, 851.
- [7] S. R. Chinn; IEEE J. Quant. Electr., 1975, QE-11, No. 9, 747.
- [8] C. Brecher; J. Chem. Phys., 1974, 61, No.6, 2297.
- [9] В. Ф. Золин, А. В. Лавров; ЖПС, 1976, 25, №2, 253。
- [10] B. Blanzat et al.; Chem. Phys. Lett., 1977, 51, No. 3, 403.
- [11] Z. Mazurakel et al., J. Luminescence, 1978, 17, No. 4, 401
- [12] 王庆元等; 《激光与红外》,1981, No. 9. 55。
- [13] 王亚芹等;《中国科学院长春应用化学所集刊》, (第十七集),1981,103。
- [14] 洪广言等; «化学通报», 1981, 8, 458。
- [15] 林永华等; 《化学学报》, 1982, 40, No. 3, 211。
- [16] 王庆元等;《激光与红外》,1981, No. 7,46。
- [17] M. Beucher; Les Elements des Terres Coll, 1970,
 1, No. 180, 331, ONRS Paris.
- [18] Por Due Tranqui et al.; Bull. Soc. fr. Mineral Oristallogr., 1972, 95, 437.
- [19] M. Bagieu et al.; Cryst. Struct. Comm., 1973, 3, 387.

物微粒原来密度较大的区域内形成的破坏点 也较密。显然,氟磷玻璃的这种激光损伤,不 属于基质自聚焦破坏,而是主要由固体夹杂 物微粒处的光吸收和应力效应引起的。

顾冬红同志参加了部分实验工作,本文 扫描电镜工作由黄德群、王浩炳同志完成,激 光破坏阈值由李成富等同志测定,电子探针 微区分析承北京科学仪器厂协助进行,在此 表示感谢。

参考文献

- [1] 毛锡赉等;《上海光机所研究报告集》,第八集,1980,
 p. 42.
- [2] S. E. Stokowski *et al.*; L. L. L. Livermore California, 1979, 94550.
- [3] P. E. James et al.; Phys. and Chem. of Glass, 1978, 19, No. 2, 24~27.
- [4] Izumitani T., Asahara Y.; Electro-Opt. /Laser Internat., 80 UK, p. 172~179.